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Abstract: The three cyclodextrins (alpha-, beta-, and gamma-) formed inclusion complexes with the
dimer of disodium 1,8-disulfonato-3,4,5,6-acridinetetracarboxylic acid (ATCA) in water. In the
complexes, one ATCA is partially included inside the cavity of the cyclodextrin while another ATCA is
outside and there is no dinstinction between the terms host and guest. Copyright © 1996 Elsevier Science Ltd

Cyclodextrins (alpha-, beta-, and gamma-, 1) have always been known as host molecules until recently
when we reported, for the first time, that they acted as guest molecules to cyclotetrachromotropylene (a
macrocycle)l and calcichrome (a non-macrocycle).2

In this paper, we report an interesting complexation, involving cyclodextrins and disodium 1,8-
disulfonato-3,4,5,6-acridinetetracarboxylic acid, 2.} in which there is no distinction between host and guest in
the complexes formed.

1

n = 6, alpha-cyclodextrin

n = 7, beta-cyclodextrin

—/n n=8, gamma-cyclodextrin

The proton nmr spectra of the three cyclodextrins in D,0 are affected by the presence of 2 (Figure 1).
The proton chemical shifts move upfield (Figure 2 for gamma-cyclodextrin), However, unlike all the previous
observations reported in the literature, both the interior (H; and H;) and exterior protons (H,, H, and H,) of the
cyclodextrins are practically equally shifted upfield in the presence of 2 (Table 1). The possibility of 1 acting
as the host with 2 partially included in its cavity (as shown by the CPK molecular model 3, alpha-cyclodextrin
shown in all CPK models) is ruled out because this geometry requires the interior protons of 1 to be more
shielded than the exterior protons.” The possibility of 1 acting as a guest, sitting vertically in the hydrophobic
cavity of the dimeric form* of 2 (as shown by the CPK molecular model 4) is also ruled out because this
geometry requires the interior protons of 1 to be less shielded than the exterior protons. 12 A possible
geometry of the complex to explain the equal upfield shifts is shown in 5 where the dimeric form of 2 has one

molecule of 2 partially included in the cavity of 1 and another molecule outside the cavity. The included 2
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Figure 1. 300 MHz proton nmr spectra in D,0 at 25°C 0f 0.005 M of cyclodextrins (solvent peak at 4.80 ppm
as internal reference); (A) alpha-cyclodextrin: a. 2 absent: b. in the presence of 0.129 M of 2; (B) beta-
cyclodextrin: a. 2 absent; b. in the presence of 0.026 M of 2; (C) gamma-cyclodexirin: a. 2 absent; b. in the

presence of 0.026 M of 2. H, and solvent peaks not shown.
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Figure 2. Proton nmr chemical shift titrataion curves of gamma-cyclodextrin (0.005 M) in D,0 at 25°C. R is

the molar ratio of 2 to 1 used. The curve for H, has been shifted down by 1.5 ppm and those of Hj; and H, by

0.2 ppm.
Table 1. Proton NMR Chemical Shifts of Cyclodextrins in D,0 at 25°C.

Cyclodextrin H, H, H; H, Hy Hy
alpha 5] 5.08 3.65 4.00 3.61 3.86 392
As® 0.12 0.09 0.09 0.12 0.10 0.13

beta 3, 5.10 367 3.99 3.60 c 3.90
A8 0.12 0.09 0.09 0.11 0.11

gamma 3§ 5.14 3.68 3.96 3.62 c 3.90
A8 0.09 0.09 0.07 0.10 0.09

“Chemical shift of free cyclodextrin in ppm; assignment of peaks according to ref. 8. "Difference between the chemical
shifts of free and complexed cyclodextrin in ppm at a molar ratio of 2 to 1 is 26:1; positive value indicates upfield shift.

“Peak could not be discerned.
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shields the interior protons of 1 while the outer 2 shields the exterior protons. giving rise to equal upfield shifts
of these protons. In the complex shown in 5, 1 could either be considered as a host (with a part of the dimer of
2 included in its cavity as the guest) or as a guest (with part of it included in the hydrophobic cavity formed by

the two acridine walls). Therefore, there is no distinction between host and guest.

(outside) 2
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